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Vector Analyses of Propagation Constants in
Dielectric Optical Waveguides with
Perturbed Refractive-Ir~dex Profile

MITSUNOBU MIYAGI, MEMBER, IEEE, AND SHIGEO NISHIDA, SENIOR MEMBER, IEEE

Abstract —A new method is developed to evaluate the propagation

constants of guided or leaky modes in cylindrical dielectric opticaf wave-

guides with arbitrary cross sections. It is assumed that the refractive-index

profiles of the fiber deviate from the step-index ones. Format expressions

of the propagation constants are given for waveguides with anisotropically

perturbed refractive-index profiles. The method is appfied to a ,circular

step-index fiber with an azimuthatly perturbed refractive-index profile, and

it is shown that scalar analyses cannot properly predict the propagation

constants of those modes whose angutar order satisfies certain conditions

with respect to the Fourier spectrum of the perturbation of the refractive-

index profile.

I. INTRODUCTION

A S FABRICATION techniques and applications are

maturing, optical fibers are being made with various

cross sections and refractive-index profiles. In order to

compute the propagation properties of these fibers, to

design fibers with prescribed properties, or to investigate

the effects of waveguide imperfections, several methods of

analysis are generally available, based OP scalar or vector

theories as summarized in [1]. Analytical methods, if they

can be successfully applied, have the advantage of yielding

explicit expressions for the propagation constants of modes

and, therefore, of their group delays.

radially perturbed refractive-index profiles. The new

method requires only lower order field distributions to

evaluate propagation constants when they are expanded in

a series of a perturbation term. The method is extended to

waveguides with arbitrary cross sections and also to wave-

guides which support leaky modes. An essential difference

between results predicted by the present method and by

the scalar analysis is shown to exist for circular step-index

fibers with an azimuthally perturbed refractive-index plro-

file.

11. CJENERAL EXPRESSIONOF PROPAGATION

CONSTANTS IN CYLINDRICAL WAVEGUIDES WITH

PERTURBED REFRACTIVE-INDEX PROFILE

A. Circular Waveguides with Anisotropical Perturbation

We first consider a circular waveguide whose refractive

index n ~(r ) has a staircase distribution as shown in Fig. 1.

When the optical fiber suffers from perturbations such as

an elliptical core, elastic deformations, or a bent axis, the

refractive index n (r, d) is expressed by

n2(r, f3)=n~(r)+2cA(r, t9) (1)

region and the cladding is small, the difference of the

propagation constants predicted by the scalar and vector

analyses seems to be small [2]–[5]. Naturally, polarization

properties of the modes have been discussed vectorially [4],

[6]-[7]. There is no exact analytical treatment for fibers

that have azimuthally perturbed refractive-index profiles

[8], [9], although some vector analyses [5], [7] are available

for fibers with only radially perturbed ones.

On the other hand, a coupled-mode theory [10], [11] is

often used to analyze anisotropically perturbed optical

fibers [12]. By noticing that the coupled-mode theory itself

is based on the completeness of the modes, one cannot

generally ensure the results in fibers which support a few

modes when the radiation modes are not taken into account.

In this paper, we present a new analytical method to

evaluate the propagation constants of the guided modes in

circular step-index fibers with anisotropically, azimuthally,

When the refractive-index difference between the core ! hw ere ~ is a ;small perturbation parameter and A(r, 0 ) (or

simply written A) is a tensor expressed as

[)

A A,O A,zrr

A = AO, AeO A6Z . (2)

A AZO AZZzr

Aij (i, j = r, 0, z ) are functions of the transverse coordi-

nates r and 6).

By expanding the electric and magnetic fields E and H

and the propagation constant /3 of the guided modes as
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[13]

E=~@)+~~(l)+~2~(2)+ . . .

H= ~(o) +c@ + ~2H(2) + . . .

/3 up@)+@)+@’)+ 0..

and substituting (3)–(5) into Maxwell’s equations

~#-+j~HO =jaeo,[n~(r)E, +2c AE”7]

– j~H,-~= jwco[n~(r)E@ +2c AE. ~]

(3)

(4)

(5)

(6)

(’7)

0018-9480/85 /0800-0667$01 .00 @1985 IEEE



668 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-33 , NO. 8, AUGUST 1985

~ ‘oc, C2 c, cN

no(r)

Fig. 1. Refractive-index profile in a circular step-index fiber with the

refractive-index discontinuity at r = rl, r2,. . . . r~. Path integrals ap-

pearing in the text should be done counterclockwise as shown in the

figure.

(9)

ilEz
– jBEr – ~r— = – j@pOHO (lo)

(11)

we can obtain transverse electric and magnetic fields E$z),

E~iJ, H~i), and Hji) (i= 0,1, 2) from (6), (7), (9), and (10)

as follows:

K;(r)@) = ~(’) [fl(o)~}i-’) + @Po@-2)]

+ B(l) [@OJ@-l) + UpoHj~-l)]

–2k:AE(z-1). ?

[

~E(g) (i)
(J/.Lo 8H=

–j ~(0)*+yT

1

(12)

(13)

where ? and ~ are unit vectors along the r and 6 direc-

tions, respectively, K:(r) is defined by

‘;(r) = n{(r)k~ –p@)2 (16)

and quantities with negative superscripts are understood to

be zero.

By substituting (14) and (15) or (12) and (13) into (8) or

(11), one obtains the differential equations to determine
E~’) or H~i) (i = O,1,2) as follows:

2
+ j~

no(r) V”[~(OJAE(i-l)
+@l)AE(i-2) 1

‘~(r) A~(J–1).j +4–2—
@(o@(l)
— AE(l-2).2 (17)

n;(r) n;(r)

= [2@0)/32)+&)2] H;l-2) + ‘2~(0)~(1)H:~-1)

– j2acov X[AE(i-1)].2 [18)

where v 2, v., and v X are two-dimensional operators.

No restricted assumptions have yet been made to derive

(12)-(18) from Maxwell’s equations.

We now explain how to express the first-order correction

term ~ ‘1) to /3(o) in terms of the known zeroth-order

electric and magnetic fields E ‘0) and ~(o).

Forming

over the innermost

~con~(r)[E$0)V2E/1) – E~l) v 2E~0)] (19)

with the help of (17), and “integrating

region r < r-l (see Fig. 1), one obtains

(/
p(l) Zp(”) ucon~(r)E~0)2 dS

s,

+ j$ [~(”)lfjo) + COCorr~(r)E$O)] E~O)dC
c1 }

(20)

L -1 where Cl denotes the periphery r = rl, and G~O)is defined
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by

@)_ ‘H’) p
AE(O.~ – j *—v. [A@OJ]. (21)

n:(r) no(r)

To derive (20), Green’s theorem was used to transform the

surface integral into the line integral around the periphery

r = rl.

Similarly, integrating up o[HJO) V 2H~1) – HJ1) V 2H~0)] in

the same region, one obtains

{/
@O 2@O) ~poH;0)2 dS

s~

}
– j~c, [B ‘O)E$O)– OWOH;OJH;”) dC

= 2~ wpoG$jH~O) dS – j2k~$ AE (o).~H~O)dC
c,

+;~ ( )[ 1K; r EjO)H~l) – E$)H~O) dC
cl

where G# is defined by

(23)G#)= j~cov XIAE(0)] .2.

By adding (20) and (22) and noticing that

669

One should note that the first-order fields appear in the

third term on the right-hand side.

In order to eliminate this term, we first use similar

integrals over annular regions defined by radii r = rl and

r2, r2 and r~,..., and also over the infinite region from

r = r~ to m. By dividing each equation thus obtained by

K~(r ), which is piecewise constant, and summing up all

equations, we eliminate the integrals where the first-orcler

fields appear, The line integrals appear twice in opposite

directions at the discontinuity r = ri (i= 1,2, -.., N) and

the line integral along r = m becomes zero because all

fields decay exponentially. Therefore, the final expression

for ~(1) becomes

~(1){2~(0)/~&,@con~(r)E$0,2+~poH~02]dS

[1

+j~$il~
‘O(ri)

[/3(0)H$0)+ ~~orz~(r)E~O)]E(0)dC
z

1=1 c,

J 1

– ji$l $:,6 -#-
[@)E@)

o– 1
tip oH/!O) H$”) dC

‘O(ri) }

Ko(r) [%~;(r)@)E(0) + tipoG#)H~O)] ds
.21+

z

(26)

where 8 [f(ri, O)] stands for the discontinuity at r = r,

defined by

/3[f(ri, f3)] =f(ri–O,O)–f(rl +0, f3). (27)

When ~(1)’= O, we can proceed to obtain the correction

term ~(2) by a method similar to the one described above.

In this case, E$2) and ll~z) satisfy

V ZL7;Z)+ K;( r ) ~;z) = 2P @)/3(z)E;O)– 2G(# (28)

v 2H~2)+ IC~(r ) H~2) = 2@(0)@(2)HJ0) – 2G# (29)

where G~l) and G#J are defined by

G:)_ ‘:(r) p(o)
AE(V.~ . j7 no(r) VCIAE(l) ] (30)

n;(r)

k:G}) = j— v XI AJY(l)] .2.
UP o

(31)

Therefore, by integrating the following quantity over the

whole transverse cross section

&{~~On;(r)[E;O) V2E(2)-Ej2)VzE(0)]z z

+ LJpo [ H:”) V 2H:2) – H:) V 2H;0)] }

we finally express /?(2) in terms of known quantities

(32)

p(o),
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Fig. 2. The coordinate system (i-, 19) and (v, T) in cylindrical waveguides

with arbitrary cross section. v and 7 are perpendicular and paratlel to

each boundary C, where the refractive index has a discontinuity. + is
the angle between r and v.

E(0), E 0), H(o), and ~(1) as follows:

+~~ $J(PW’8[*]
1— ‘

[ 1)

AE(l).~
– q-lo H:% dC.

K:(r, )

(33)

One should note that determination of ~ (1) or ~ (2) does not

require the evaluation of the perturbed fields to the same

order, which simplifies the calculations considerably corm

pared with an ordinary characteristic equation method.

B. Cylindrical Waveguides with Arbitrary Cross Section

Consider a waveguide with an arbitrary cross section as

shown in Fig. 2, where the refractive indices of regions

surrounded by closed curves [C,, C,+l] (i =1,2,. . . . N– 1)

are constant. The circular coordinate system (r, 6) and the

coordinate system (v, ~) perpendicular and parallel to the

boundaries are also used. Let the angle between v and r be

~. One can express E, and J?, at the boundaries in terms

of E, and EO of the circular coordinate system by

mE, Cos+

1( )

– sin ~ E,

ET = sinq E@ “
(34)

Cosq

For an arbitrary scalar function F, we also obtain

(dF\ (aF\

at the boundaries.

By using a procedure similar to that given in [14], one

can extend the results (26) and (33) for circular waveguides

to any cylindrical waveguides as follows:

(36)

(37)

where 2 and ? are unit vectors perpendicular and parallel

to each boundary, respectively.

In deriving (26) and (33) or (36) and (37), we have

assumed that the fields decay exponentially at r = CQ for

guided modes and, therefore, we can delete the line in-

tegrals along r = cc. For leaky modes, the situation is

different from that of guided modes, i.e., the field intensi-

ties grow exponentially. However, by choosing a suitable

path of integration at r = co in the complex plane [15],

[16], one can change the growing fields into decaying fields

so that the line integral at r = co also vanishes. Therefore,
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(36) and (37) are shown to be applicable to leaky as well as where 80 represents the orientation of the mode, by which

guided modes. thezeroth-order solution ~f”) is expressed as

III. PROPAGATION CONSTANT IN CIRCULAR

DIELECTRIC OPTICAL WAVEGUIDES +’”’=~n(~;)cos(ne+eo). (43)

WITH AZIMUTHALLY PERTURBED

REFRACTIVE-INDEX PROFILE One should note that the scalar analysis cannot predict ~ (1J

In this section, we apply the vector analysis given above
of the LP~~ mode whose angular order satisfies 2n = q, i.e.,

to a simple case of a weakly guiding circular step-index
the propagation constant predicted by the scalar analyses

fiber with an azimuthally perturbed refractive-index pro-
depends on the orientation.

file, and we compare the result with that predicted by a
By similar calculations for /3(2) based on the scalar

scalar analysis.
analysis (Appendix I), one can deduce that @(2)depends on

Let the core radius be T, and the refractive index of the
the orientation when n = q [17]. However, this fact does

core be n ~. We assume a perturbation of the form
not agree with the result given in [13] even if the power of

the mode is fully confined in the core. In fact, when
A(r, O)=p(r)cos(qO) (38) A(r, /3) takes the form.

which is an angular spectrum of the perturbed refractive-
A(r, d)=rcos(d) (44)

index profile, For simplicity, we consider a waveguide

where the power of the guided mode is highly confined in a weakly guiding fiber whose power is fully confined in

within the core. Therefore, we can put E,= Ee = H,= He the core, ~(1)= O and the present vector analysis gives ~ I*)

= O at r = T, and (26) is simplified as follows: of the LP.~ mode as follows [13]:

p(qp)
/[

@Con;E;0J2+ UPOH;”J’] dS

()[

@2J= ~ M 2T~ ~_ 4(~2-1)
12 n“u 1u’ “

(45)

J
= k; A(r, 6)[ticon@;0)2+ (.JPOH:”)2] dS

On the other hand, the scalar analysis leads to (Appenclix

/( [

II)
+ jk~ ‘A Ef)H(o) _ HJO)E;O) ]

%=

)
_ ~!! [E@)H:O) - H;O)E;O)] dS (39) ()[

/3(2)=1 & 2T’ 1– 4(n2–1) –;cOS200~n1

12 nou u’
r~d’

1
(46)

where the integral should be done in r < T, and we have

used the relation ~(“) = n “ko. which shows that it does not give the correct result for the

By substituting zeroth-order fields [13], one can easily LP1~ mode. “Notice that if we put

deduce that the HE.+ ~~ and EH~_ ~~ modes are degener-
n~

ate for n >2, and the TEo~, TMo~, and HE2~ modes are 6=— (417)
degenerate. Therefore, by combining these circular modes R

properly, one.can construct the LP~~ modes whose /3(1) is c‘~ (2) COn-es~On& to the phase constant change of the

evaluated as follows: mode due tc~ a uniform waveguide bend of the bending

tjTJ;(WT)ddrdr
radius R.

p(l) _ % o
6

fioT2 J:-l(u)
q“ (40)

IV. CONCLUSION

where I?qo is Kronecker’s delta and u is the root of J.(u) A new analytical method is presented to calculate the
= o. propagation constants of the guided as well as leaky modes

On the other hand, we can obtain j? ‘1) for the scalar k cylindrical step-index fibers with anisotropicallly,

equation of azimuthally, radially perturbed refractive-index profiles.

V2$+[k:n2(r,0)– f12]+=0
The method is applied to a simple case, and it is shown

’41) that scalar analyses cannot properly predict the propa-

satisfying the boundary condition $( T, 6 ) = O as follows gation constants of particular modes.

(see Appendix I): Further application of the method will be given by

emphasizing the relation with the coupled-mode analysis.

/j(l) = %

~TJ~(ur/T)p(r)rdr

/!30T2 J;-l(u)
APPENDIX I

Consider the following scalar wave equation:

{

cos2tJo62nq (q # o)
x

1 (q= 0) (42) V2$+[k&2(r, f3)–~2] $=0 (Al)
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where n 2( r, O) is represented by

n2(r, s3)=n~(r, f3)+2~A(r,0) (A2)

and n:( r, O) is a piecewise step function in a transverse

cross section.

By expanding ~ as

+ = @o)+ c+(l)+ E2+(2)+ . . . (A3)

we can obtain differential equations for ~(’) (i = 0,1, 2) as

follows :

V2*(0)+[k~n~(r,8)–/3(0)2] ~tO)=O (A4)

vz+(l)+ [k;n~(r,e)–~(o)’]+(1)
= 2[~(0@@)-k~A(r,8)]~(0) (A5)

V 24(2)+ [k~n~(r, fl) – ~(o)’] +(z) = [2f3@@@) + p(l)z] @)

+2[~(0~(1)–k~A(r,f3)] @l). (A6)

By following similar procedures in Section II-A and

noticing that $ and 8$/8v are continuous at each discon-

tinuity of the refractive index, we can express ~ ‘1) and /3 ‘2)

as follows:

(A8)

where the integral should be done over the whole cross-sec-

tional area. One should note that (A7) is exactly the same

as that given in [18].

APPENDIX 11

We assume a weakly guiding circular fiber with the

refractive index of the core no and with core radius T. By

setting

A(r, f3)=rcos(19) (A9)

and solving (A4) and (A5) under the condition that
rj(”)(r, 0) = $(l)(r, d) = O at r = T, one obtains

+(o)=J.(~;)cos(ne+eo) (A1O)

-h.(~) cos[(n-l)d+f?o]} (All)

where

%(x)= Jn+l(~x)+x2Jn-l( tf~) (A12)

hn(x)=Jn_l(ux)+ x2Jn+1(ux) (A13)

and u is the root of J.(u)= O.

By substituting (A1O) and (All) into (A8) with ~(1)= O,

one finally obtains (46).
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