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Vector Analyses of Propagation Constants in
Dielectric Optical Waveguides with
Perturbed Refractive-Index Profile

MITSUNOBU MIYAGI, MEMBER, 1EEE, AND SHIGEO NISHIDA, SENIOR MEMBER, IEEE

Abstract —A new method is developed to evaluate the propagation
constants of guided or leaky modes in cylindrical dielectric optical wave-
guides with arbitrary cross sections. It is assumed that the refractive-index
profiles of the fiber deviate from the step-index ones. Formal expressions
of the propagation constants are given for waveguides with anisotropically
perturbed refractive-index profiles. The method is applied to a:circular
step-index fiber with an azimuthally perturbed refractive-index profile, and
it is shown that scalar analyses cannot properly predict the propagation
constants of those modes whose angular order satisfies certain conditions
with respect to the Fourier spectrum of the perturbation of the refractive-
index profile.

I. INTRODUCTION

S FABRICATION techniques and applications are

maturing, optical fibers are being made with various
cross sections and refractive-index profiles. In order to
compute the propagation properties of these fibers, to
design fibers with prescribed properties, or to investigate
the effects of waveguide imperfections, several methods of
analysis are generally available, based on scalar or vector
theories as summarized in [1]. Analytical methods, if they
can be successfully applied, have the advantage of yielding
explicit expressions for the propagation constants of modes
and, therefore, of their group delays.

When the refractive-index difference between the core
region and the cladding is small, the difference of the
propagation constants predicted by the scalar and vector
analyses seems to be small [2]-[5]. Naturally, polarization
properties of the modes have been discussed vectorially [4],
[6]-[7]. There is no exact analytical treatment for fibers
that have azimuthally perturbed refractive-index profiles
[8], [9], although some vector analyses [5], [7] are available
for fibers with only radially perturbed ones.

On the other hand, a coupled-mode theory [10], [11] is
often used to analyze anisotropically perturbed optical
fibers [12]. By noticing that the coupled-mode theory itself
is based on the completeness of the modes, one cannot
generally ensure the results in fibers which support a few
modes when the radiation modes are not taken into account,

In this paper, we present a new analytical method to
evaluate the propagation constants of the gnided modes in
circular step-index fibers with anisotropically, azimuthally,
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radially perturbed refractive-index profiles. The new
method requires only lower order field distributions to
evaluate propagation constants when they are expanded in
a series of a perturbation term. The method is extended to
waveguides with arbitrary cross sections and also to wave-
guides which support leaky modes. An essential difference
between results predicted by the present method and by
the scalar analysis is shown to exist for circular step-index
fibers with an azimuthally perturbed refractive-index pro-
file.

II. GENERAL EXPRESSION OF PROPAGATION
CONSTANTS IN CYLINDRICAL WAVEGUIDES WITH
PERTURBED REFRACTIVE-INDEX PROFILE

A.  Circular Waveguides with Anisotropical Perturbation

We first consider a circular waveguide whose refractive
index ny(r) has a staircase distribution as shown in Fig. 1.
When the optical fiber suffers from perturbations such as
an elliptical core, elastic deformations, or a bent axis, the
refractive index n(r, #) is expressed by

n(r,0)=n3(r)+2¢A(r,0) (1)

"where ¢ is a small perturbation parameter and A(r,8) (or
‘simply written A) is a tensor expressed as

Arr Arﬂ Arz
A=Ay Agg By, (2)
Azr Az0 Azz

A;; (i, j=r,8,z) are functions of the transverse coordi-
nates » and 6. ‘

By expanding the electric and magnetic fields £ and H
and the propagation constant 8 of the guided modes as
[13]

E=EO 4L EOQ 4L ?E@ 4 ...
H=HO+cHY +2H® + ...
'3='3(0)+€'3(1)+€2'3(2)+ ce

and substituting (3)—(5) into Maxwell’s equations

(3)
(4)
(5)

JH
%—50—‘5+j,BHa=jw€0.[n%(r)E,+2eAE-?] (6)
H.
— jBH, — 94, _ jweo[n%(r)Eo +2¢AE-8]  (7)

ar
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Fig. 1. Refractive-index profile in a circular step-index fiber with the

refractive-index discontinuity at r=n,r, -, ry. Path integrals ap-
pearing in the text should be done counterclockwise as shown in the
figure.

14 1 JH,
—r_ ar (r 0) 30 _]weo[no(r)E +2e¢AE- Z] (8)
1 8E, .
r 98 ~ JemoH, (©)
JE, )
— JBE, - ar JwpoH,y (10)
14 1 JE,
~ 77 (rEg) =+ 25" == JouoH, (11)

we can obtain transverse electric and magnetic fields E,
E, HO, and H (i=0,1,2) from (6), (7), (9), and (10)
as follows:

() ED = BO OB D+ apoHY )]
+B(1)['3(0)Er(,71)+ wV‘OHﬁ(i_l)]
—2kZAECTD-7

JELD IHY
- ][B(O) + Lko

ar Ty aa} (12)

k2(r)Ef =B [BOES™? — wp H 2]
+BO[BOES — opoHO V)]
—2k}AEC"D-6

©) BE(')
J['B s ] (13)

() B0 = B0 [BOH D - wegni(r) ES )]
+BO[BORE — wcgnd(r) B ]
+2we BOAEC D4

2 (1)
| weoni(r) ES”
+1[ r o9

dH®
~ “HhoTy,

-0 (1g
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k3(r) HfO = BO[ BOH{™ + weond(r) B 2]
+BO[BOH ™D+ wegnd(r) ES Y]
—20eBOAECD.}

dED B(O) 3H(t)
ar r

(15)

-J ‘*’fono( )

where # and # are unit vectors along the r and @ direc-
tions, respectively, k3(r) is defined by

k3(r) =ng(r)ks— B (16)

and quantities with negative superscripts are understood to
be zero.

By substituting (14) and (15) or (12) and (13) into (8) or
(11), one obtains the differential equations to determine
E® or HY (i=0,1,2) as follows:

V2ED +k2(r)ED
= [2,3(0)3(2) +BW| ES2 4 2pOBWEGD

( )v [BOAEG-D 4 gOAEG-D]
ny

"0( ) E(’_l)-2+4B(O)'B( AEGD.3
”0( ) ny(r)
VH + w5 (r) HYO
= [ZB(O)B(Z’+,3(1)2]H}'_2’+2B(°’B‘1)Hz("1)
— J2weyv X[AEGD]-2

(17)

(18)

where V2, V-, and v X are two-dimensional operators.
No restricted assumptions have yet been made to derive
(12)—(18) from Maxwell’s equations.

We now explain how to express the first-order correction
term BM to B©® in terms of the known zeroth-order
electric and magnetic fields E© and HO.

Forming

weont(r)[EP VE® - EO v 2EL)]

(19)

with the help of (17), and -il‘ltegrating over the innermost
region r < r; (see Fig. 1), one obtains

,3<l>{2[3<°>f wegn2(r)E ds
Sl

+ I [BOHP-+ weori(r) EO] O dc
G

=2 [ wend(r)GPED ds + jzweoﬁ@sﬁ AE©FE® 4C
S &1

+ 7 k3 ECHP — HPE®] dc
1

AHO

oHO
z__ O
£ %8

a4 z

+BOf 1 [E;D ]dc (20)
(R4

where C; denotes the periphery r = r,, and G is defined
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by

s oo,

To derive (20), Green’s theorem was used to transform the
surface integral into the line integral around the periphery
r=r,.

Similarly, integrating wpuo[H® v2H® — HO v2H®]in
the same region, one obtains

GO = v-[AEO].

B‘“{2B‘°’ [ on HO' ds
)
- jgsc [BOEP — wp HO] HO dC}
1
=2 wp GPHO dS - 2k AE©-GHO dc
5 G

+ i k() EPHO - EPRO] dc
1

JE® IED
+ B“”gﬁ [H‘O) 2 W—z-ldc (22)
where G is defined by
G = jwe,v X[AE®]-2 (23)
By adding (20) and (22) and noticing that
1 H® JH®
Odfy = @ z __g® z
A ¢Cr[E a9~ E g |9
dE©
) O~z Gz
+B ¢q [H - HO—%-|dC
=804 = OO _ gOgOL
B 9Sclr G[E, HO - EOH®) dC
=0 (24)

one obtains
BO(269 [ [acond(r) B+ oo 17] as
+ I [BOHP+ wegnd(r) EL] EO dc
- j¢c 1[.3(0)150(0) — op HOTH® dC}
=2 [oconi(r)GRED + onGPHO) as
+ j2¢c l[weO,B(O)AE(O)-FEZ(O) — k2AE®.§HO] dC
+ j95C lk%(r) [ECHP ~ HPED

+ EQPH® - EPHO)] dC.

(25)
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One should note that the first-order fields appear in the
third term on the right-hand side.

In order to eliminate this term, we first use similar
integrals over annular regions defined by radii r =r, and
r,, r, and r;,---, and also over the infinite region from
r =ry to co. By dividing each equation thus obtained by
k3(r), which is piecewise constant, and summing up all
equations, we eliminate the integrals where the first-order
fields appear. The line integrals appear twice in opposite
directions at the discontinuity r =7, (i=1,2,---, N) and
the line integral along r =00 becomes zero because all
fields decay exponentially. Therefore, the final expression
for B® becomes

<1){2ﬁ(0)f
+iT $s ¢ [

=176

[weono( YEO + wp HO’ ] das

}[,B(O)H O+ wend(r)EQ|EQ dC

k3(r)
—j'§ é, Lo(")

2[ 2( ) [weonz( )G(O)E(0)+ Wi G(O)H(O)] das

[BOE — wp HO| HO dC}

AE©.7
k(1)

OF O
Fape 12195 {.3 !

©),
— wp HOS [AE_é}} dac (26)

ko(r)

where 8[f(r,,0)] stands for the discontinuity at r=r,
defined by

8[f("i,0)]=f("i_0,0)—f(rz+0’0)- (27)

When B® =0, we can proceed to obtain the correction
term B® by a method similar to the one described above.
In this case, E® and H® satisfy

VZEP +k3(r)EP=2BOBPE® -2GP  (28)
V2HD + 2(r) HO = 28OBOHO —2GH  (29)
where G and G are defined by
x3(r) B
GP = AEM.3 — j—— perma [AED]  (30)
ng(r) o(r)
k2
G =j_ - -V X[AE®]-z. (31)

Therefore, by integratmg the following quantity over the
whole transverse cross section

{mono( )[E<°>v2E(2>— E(Z)sz(O)]

2()

+opo[HOV?HP - HOV’HP |} (32)

we finally express 8@ in terms of known quantities 8©,
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Fig. 2. The coordinate system (r, f) and (v, 7) in cylindrical waveguides
with arbitrary cross section. » and T are perpendicular and parallel to
each boundary C, where the refractive index has a discontinuity. ¢ is
the angle between r and ».

EQ EO HO® and HO as follows:

.3(2){23(0)[ =)
+,~§9§ [
—j%gﬁ [

[weono(r)E(O) + wuo HO ]dS

) ][B(O)H O 4 weon%(r)E,(O)] E®dcC

[BOEP - wp HO|HO dC}
"0( )

2/ 2() [weonz(r)G(l’E(°)+ wuGPHO] ds
Ko

=16

Ly g

w”O,_l G,

AED-p
kg (r,)

— }dC.

One should note that determination of 8% or 8@ does not
require the evaluation of the perturbed fields to the same
order, which simplifies the calculations considerably com-
pared with an ordinary characteristic equation method.

{ BOE®S

(33)

B. Cylindrical Waveguides with Arbitrary Cross Section

Consider a waveguide with an arbitrary cross section as
shown in Fig. 2, where the refractive indices of regions
surrounded by closed curves [C,,C, ;] (i =1,2,- -1)
are constant. The circular coordmate system (r, 0) and the
coordinate system (», 7) perpendicular and parallel to the
boundaries are also used. Let the angle between » and r be
¢. One can express E, and E, at the boundaries in terms
of E, and E, of the circular coordinate system by

E,\ [cos¢p —sing)[E,
(E )—(sincp Cos ¢ )(Ea) (34)

T
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For an arbitrary scalar function F, we also obtain

9F 9F
dv | _([cos9p —sing ar
JF B ( sing  cos¢ ) 149F (35)
ar r 30

at the boundaries.

By using a procedure similar to that given in [14], one
can extend the results (26) and (33) for circular waveguides
to any cylindrical waveguides as follows:

50280 [ L Lol oot as
Kg

+JZ¢

1=1"G

—1255 [
=2ng[

][ BOHDO + we an(O)] E®ac
"o

[BOE® — wp, HO| HO dC}

weoniGPEQ + wp GPHO| ds

"-’Ho i

AE©®
OF O3
ok 5 vre| A£2

Jac

B‘2>{ZB‘°) [ (0o EO + apoHO") as
Ko

AE©.-¢
2

Ko

— wpoHOS (36)

N 1
8 _
zzigi K2
N
by
=1

][p@y;m + wegn2E®] E® dC
0

1
8 [~— } [BOE® — wp HO| HO dC}
0

1
=2 [ = [0enIGRED + wpGPHO] dS

2 N

o§95

AE®

Ko

AED.p
2

{ (O)Ez(0)5
Ko

ik

where » and 7 are unit vectors perpendicular and parallel
to each boundary, respectively.

In deriving (26) and (33) or (36) and (37), we have
assumed that the fields decay exponentially at r = oo for
guided modes and, therefore, we can delete the line in-
tegrals along r =o0. For leaky modes, the situation is
different from that of guided modes, i.e., the field intensi-
ties grow exponentially. However, by choosing a suitable
path of integration at r =co in the complex plane [15],
[16], one can change the growing fields into decaying fields
so that the line integral at r = co also vanishes. Therefore,

- w”OHZ(O)B[ (37)
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(36) and (37) are shown to be applicable to leaky as well as
guided modes.

ITI. PROPAGATION CONSTANT IN CIRCULAR
DIELECTRIC OPTICAL WAVEGUIDES
WITH AZIMUTHALLY PERTURBED

REFRACTIVE-INDEX PROFILE

In this section, we apply the vector analysis given above
to a simple case of a weakly guiding circular step-index
fiber with an azimuthally perturbed refractive-index pro-
file, and we compare the result with that predicted by a
scalar analysis.

Let the core radius be 7, and the refractive index of the
core be n,. We assume a perturbation of the form

‘A(r,0)=p(r)cos(q0) (38)
which is an angular spectrum of the perturbed refractive-
index profile. For simplicity, we consider a waveguide
where the power of the guided mode is highly confined
within the core. Therefore, we can put E,= E,= H,= H,
=0 at r =T, and (26) is simplified as follows:

,B(D,B(O)f[weon%Ez(O)z+ quHz(O)Z] das
= k%fA(r, 0)[weon(2)Ez(°)2+ wp,OHz(O)Z] ds

. dA
v ki {22 [£0m0 - HOED]

104

7 96

where the integral should be done in r < T, and we have
used the relation SO = nk,.

By substituting zeroth-order fields [13], one can easily
deduce that the HE, ,,,, and EH,_,,, modes are degener-
ate for n > 2, and the TE,,, TM,,,, and HE,, modes are
degenerate. Therefore, by combining these circular modes
properly, one.can construct the LP,,, modes whose B is
evaluated as follows:

242 LTJnZ(ur/T)p(r)rdr
:BOT2 Jn2~1(“)

where §, is Kronecker’s delta and u is the root of J,(u)

(eon - oES]) a5

B(l) -

8,0 (40)

On the other hand, we can obtain 8® for the scalar

equation of
v+ [kin?(r,0)~B]¥ =0 (41)

satisfying the boundary condition ¢(7,8)=0 as follows
(see Appendix I):

2K2 fOTJnZ(ur/T)p(r)rdr
BOTz an—-l(u)

o { cos26,6,,, (g+0)
1 (¢=0)

B(l) =

(42)
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where 6, represents the orientation of the mode, by which
the zeroth-order solution Y@ is expressed as

¢(°)=Jn(u%)cos(n0+00). (43)
One should note that the scalar analysis cannot predict 8%
of the LP,,, mode whose angular order satisfies 2n =g, i.e,,
the propagation constant predicted by the scalar analyses
depends on the orientation.

By similar calculations for 8% based on the scalar
analysis (Appendix I), one can deduce that 8® depends on
the orientation when n =g [17]. However, this fact does
not agree with the result given in [13] even if the power of
the mode is fully confined in the core. In fact, when
A(r, 0) takes the form

A(r,0)=rcos(8) (44)

in a weakly guiding fiber whose power is fully confined in
the core, BY =0 and the present vector analysis gives §®
of the LP,,, mode as follows [13]:

n_ 1 (kTN 4(n?-1)
Q= — | 207 P2 B A .Y 4

om L(BIfpafy 4D
On the other hand, the scalar analysis leads to (Appendix
II)

1 [ k,T\? 4(n*-1) 3
B(2)=1_2.(no7) T2[1_.Lu2—1_50052008n1]
(46)

which shows that it does not give the correct result for the
LP,,, mode. Notice that if we put

2
)
€= (47)

€’B@ corresponds to the phase constant change of the
mode due to a uniform waveguide bend of the bending
radius R.

IV. CONCLUSION

A new analytical method is presented to calculate the
propagation constants of the guided as well as leaky modes
in cylindrical step-index fibers with anisotropically,
azimuthally, radially perturbed refractive-index profiles.
The method is applied to a simple case, and it is shown
that scalar analyses cannot properly predict the propa-
gation constants of particular modes.

Further application of the method will be given by
emphasizing the relation with the coupled-mode analysis.

APPENDIX |

Consider the following scalar wave equation:

v A+ [k2n?(r,0)— B2y =0 (A1)
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where n%(r, 8) is represented by
n*(r,0)=n3(r,0)+2¢A(r,0) (A2)

and n(r,0) is a piecewise step function in a transverse
cross section,
By expanding i as
Y=9O+ey®+ YD+ ... (A3)

we can obtain differential equations for ¢ (i=0,1,2) as
follows:

v YO+ [kgnd(r,0)- 8|90 =0

VO + [kgnd(r,0) =By
=2[BOBDV—k2A(r,8)]y© (AS)

v+ [kgn(z)(r,g)_'[g(of] Y@ = [28OpD 1 O] y©
+2[ OBV —k2A(r,0)]¥®. (AS6)

(A4)

By following similar procedures in Section II-A and
noticing that { and d¢ /d» are continuous at each discon-
tinuity of the refractive index, we can express 8® and 8@
as follows:

. kng(r,0)¢<°>2ds )
B = A7
B© / O’ ds
g JIK3A(r0)-BOBD] oYV ds gy
ﬁ(o)f¢(0)z ds 2B(0)
(A8)

where the integral should be done over the whole cross-sec-
tional area. One should note that (A7) is exactly the same
as that given in [18].

APPENDIX 11

We assume a weakly guiding circular fiber with the
refractive index of the core n, and with core radius 7. By
setting

A(r,8)=rcos(8) (A9)
and solving (A4) and (A5) under the condition that
YO(r,8)=yN(r,0)=0 at r =T, one obtains

=4 ot o
k,T)’T
YO = £_°4;)_{gn(%)cos [(n+1)0+ 6]

- h,,(%)cos[(n -1)0+ 00]} (A11)
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where

8, (x) =T, (ux)+x*J,_, (ux) (A12)

ha(x) = J, 1 (ux) + %, 1 (ux) (A13)

and u is the root of J, (u)=0.
By substituting (A10) and (A11) into (A8) with B =0,
one finally obtains (46).
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